Optimal Surrender Policy for Variable Annuity Guarantees

Anne MacKay

University of Waterloo

January 31, 2013

Joint work with
Dr. Carole Bernard, University of Waterloo
Max Muehlbeyer, Ulm University

Research funded by the Hickman Scholarship of the Society of Actuaries and NSERC
Outline

1. Introduction

2. Optimal surrender boundary: GMAB case

3. Optimal exercise boundary: Path-dependent case

4. Conclusion
Variable annuities and financial options

- Variable annuities: similar to mutual funds with additional guarantees

- VA guarantees paid for via a fixed fee rate throughout the life of the contract (not paid upfront)
 - Decreases return on fund
 - Impacts value of option

- VA contract can be surrendered (Knoller, Kraut, and Schoenmaekers (2011))
 - Financial needs
 - Higher costs of opportunity
 - Moneyness of the option
Continuous fee and the surrender option

- Simple payoff at maturity:
 \[
 \max(G, F_T) = F_T + (G - F_T)^+
 \]

- Option paid by continuous fee set as percentage of fund:
 - Fee is low when option value is high
 - *Incentive to surrender* when fund value is high

- Surrender region: surrender benefit higher than payoff expected if contract is kept
Setting

Index value S_t:

\[
\frac{dS_t}{S_t} = r \, dt + \sigma \, dW_t
\]

Account value F_t based on index:

\[
\frac{dF_t}{F_t} = (r - c) \, dt + \sigma \, dW_t
\]

\[\Rightarrow F_t \mid F_s \sim \mathcal{L}N(\log(F_t) + (r - c - \frac{\sigma^2}{2})(t - s), \sigma^2(t - s))\]
Contract

- Accumulation benefit:
 \[\max(F_T, G), \quad G = F_0 e^{gT}, \quad g < r \]

- Surrender benefit:
 \[e^{-\kappa(T-t)} F_t \]
Integral representation for surrender option

- Similarities between surrender option and American option
- Can use techniques developed for American options (Kim (1990), Kim and Yu (1996), Carr, Jarrow, and Myneni (1992), Wu and Fu (2003))
- Integral can be obtained in different ways:
 - Finite number of surrender times (as in Kim (1990))
 - No-arbitrage arguments (as in Kim and Yu (1996))
Trading strategy for surrender option

- Confirm that optimal strategy is a **threshold** strategy
- **Hold the VA** below the surrender boundary B_t
- When F_t crosses B_t from below, **sell the VA** and invest the proceeds
- When F_t crosses B_t from above, use the investment to **buy the VA**
- Payoff of portfolio is payoff of VA
Gain from surrender

Proposition

The benefit associated with the surrender option between $[t, t + dt]$ for an infinitesimal time step dt is given by

$$e^{-\kappa(T-t)}(c - \kappa) F_t dt$$
Proof of Proposition

• Suppose surrender at t.

• Policyholder receives

\[
e^{-\kappa(T-t)} F_t = e^{-\kappa(T-t)} e^{-ct} S_t = e^{-\kappa T} e^{-(c-\kappa)t} S_t
\]

• To buy the VA at time $t + dt$, policyholder only needs

\[
e^{-\kappa(T-(t+dt))} F_{t+dt} = e^{-\kappa T} e^{-(c-\kappa)(t+dt)} S_{t+dt}
\]

• Investment made at t becomes

\[
e^{-\kappa T} e^{-(c-\kappa)(t+dt)} S_{t+dt} + e^{-\kappa T} e^{-(c-\kappa)t} S_t e^{rdt} (1 - e^{-(c-\kappa)dt})
\]
\[
= e^{-\kappa(T-(t+dt))} F_{t+dt} + e^{-\kappa(T-t)}(c-\kappa) F_t dt + o(dt)
\]
Price of VA with surrender

Price of VA contract

\[V(t, F_t) = E[e^{-rt} \max(G, F_T) | \mathcal{F}_t] + \]

Maturity benefit

\[e^{-\kappa T} (c - \kappa) F_t \int_t^T e^{-(c - \kappa)u} \Phi(d_1(F_t, B_u, u, t)) du \]

Surrender option

- Maturity benefit: Similar to vanilla option under Black-Scholes
- Surrender option:

\[\int_t^T e^{-r(u-t)} \int_{B_u}^{\infty} e^{-\kappa(T-u)}(c - \kappa) x f_{F_u}(x | F_t) dx du. \]
Optimal exercise boundary condition

- At maturity $B_T = G_T$ and along the surrender boundary, $V(F_t, t) = e^{-\kappa(T-t)}F_t = B_t$.

- Work backwards to solve for B_t

\[
B_t = v(F_t, t) + e(F_t, t) = e^{-c(T-t)}B_te^{\kappa(T-t)}\Phi(d_1(B_te^{\kappa(T-t)}, G_T, T, t)) + e^{-r(T-t)}G_T\Phi(d_2(B_te^{\kappa(T-t)}, G_T, T, t)) + (c - \kappa)B_te^{(c-\kappa)t}\int_t^T e^{-(c-\kappa)u}\Phi(d_1(B_te^{\kappa(T-t)}, B_u, u, t))du
\]
Numerical example

Assumptions:

- $T = 15$
- $G = F_0 = 100$
- $\kappa = 0$, unless otherwise indicated
- $c = 0.91\%$ (fair fee for maturity benefit)
- $r = 0.03$
- $\sigma = 0.2$, unless otherwise indicated
Optimal exercise boundary, sensitivity analysis: \(\sigma \)

- \(\sigma = 0.15 \)
- \(\sigma = 0.20 \)
- \(\sigma = 0.25 \)
- \(\sigma = 0.30 \)
Optimal exercise boundary, sensitivity analysis: kappa

- $k=0$
- $k=c/4$
- $k=c/3$
- $k=c/2$
Consider the payoff $\max(G_T, Y_T)$, where Y_T is the geometric average defined as

$$Y_t = \exp\left(\frac{1}{t} \int_0^t \ln F_s \, ds\right)$$

The conditional distribution of $Y_u|(Y_t, F_t)$ for $u > t$ is again log-normal with mean and variance given by

$$M^g_t = \frac{t}{u} \ln Y_t + \frac{u - t}{u} \ln F_t + \frac{r - c - \frac{\sigma^2}{2}}{2u} (u - t)^2$$

$$V^g_t = \frac{\sigma^2}{3u^2} (u - t)^3$$
Pricing formula

Theorem

Let $V^g(Y_t, F_t, t)$ denote the price at time t of the VA with guarantee G_T and a surrender benefit equal to $e^{-\kappa(T-t)}Y_t$. Then $V^g(Y_t, F_t, t)$ can be decomposed into a European part $v^g(Y_t, F_t, t)$ and an early exercise premium $e^g(Y_t, F_t, t)$

$$V^g(Y_t, F_t, t) = v^g(Y_t, F_t, t) + e^g(Y_t, F_t, t),$$

where

$$v^g(Y_t, F_t, t) = e^{-r(T-t)}e^{M_t^g + \frac{V_t^g}{2}}\Phi\left(-\ln(G_T)+\frac{M_t^g+V_t^g}{\sqrt{V_t^g}}\right) + e^{-r(T-t)}G_T\Phi\left(\frac{\ln(G_T)-M_t^g}{\sqrt{V_t^g}}\right),$$

$$e^g(Y_t, F_t, t) = e^{-\kappa T}e^{rt} \int_t^T e^{u(\kappa-r)}e^{-\frac{V_{u,t}}{2}}Y_{u,t}F_{2u}^{u-t}E[k(u,F_u,t)]\,du$$
Particularities of the path-dependent case

- Optimal surrender behaviour depends on account value F_t and geometric average Y_t.
 - \Rightarrow Optimal surrender surface

- To solve for optimal surrender surface, need to consider many values F_t at each time t.

- To simplify calculations, assume that $B_t(F_t)$ has the form

$$B_t(F_t) = \max(G_T e^{-r(T-t)}, a_t + b_t F_t)$$
Numerical example

Additional assumptions:

- $T = 10$
- Payoff: $\max(Y_T, G_T)$
- $G_T = F_0 e^{0.025T}$
- $c = 0.0197$
Conclusion

- Integral representation for the surrender option
- Can retrieve optimal surrender boundary
- Can be used for path independent and path dependent payoffs

Future work:
- Use for other types of fee structures
- Consider flexible premium (as in Chi and Lin (2013))

Thank you for your attention!